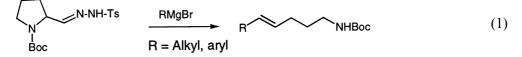


Tetrahedron Letters 41 (2000) 10131-10134

TETRAHEDRON LETTERS

New entry to alicyclic amines via alkylative fragmentation of cyclic aminoaldehyde tosylhydrazones[†]

S. Chandrasekhar,* M. Venkat Reddy and G. Rajaiah


Indian Institute of Chemical Technology, Hyderabad 500 007, India Received 23 May 2000; revised 10 July 2000; accepted 11 October 2000

Abstract

Tosylhydrazones of cyclic aminoaldehydes when exposed to aromatic and aliphatic Grignard reagents produce ring-opened acyclic unsaturated primary carbamates and carbamate alcohols in good yields. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: p-toluenesulfonyl hydrazine; amine; proline; hydroxyproline.

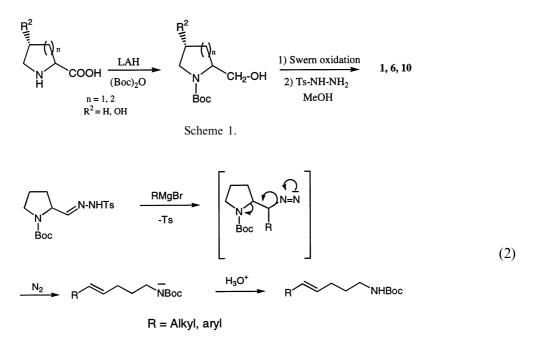
Amines and amino alcohols containing an alkene double bond are very important building blocks in organic synthesis.¹ This class of compounds have multiple functionality for further manipulation towards the synthesis of natural products and designed pharmaceutically valuable compounds.² Our group has been engaged in the development of this class of compounds over the past few years.³ As part of an ongoing project⁴ on the exploitation of our newly discovered methodology on alkylative fragmentation of aldehyde tosylhydrazones having α -heteroatom functionality, we have observed that both five- and six-membered nitrogen heterocycles with the aldehyde tosylhydrazone functionality at C₂ undergo alkylative fragmentation to result in acyclic amines and aminols having unsaturation (between C₄–C₅ or C₅–C₆). The results pertaining to this study are reported herein (Eq. (1)).

Initially, pyrrolidine-2-carboxaldehyde was protected with di-*tert*-butyl dicarbonate and derivatized with p-toluenesulfonyl hydrazine to afford the prerequisite hydrazone 1 (entry 1, Table 1). This was subjected to phenyl magnesium bromide (2.5 equiv.) in anhydrous THF for

[†] IICT Communication No. 4571.

0040-4039/00/\$ - see front matter @ 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)01807-4

^{*} Corresponding author. Tel: +91 40 7170512; fax: +91 40 7173387; e-mail: srivaric@iict.ap.nic.in


4 h to afford 5-phenyl-4-pentenyl amine derivative⁵ **2** in 75% yield. However, when the same reaction was carried out with unprotected pyrrolidine hydrazone, a complex and an uncharacterizable mixture of products was obtained. Thus, it is anticipated that the acidic N–H is better off being protected (Eq. (2), Scheme 1).

Entry	Substrate	Reagent	Product ^a	Yields(%) ^b
1	∧ N-NH-Ts	PhMgBr	Ph NHBoc 2	75
2	Вос 1	MgBr	MeO 3	65
3		ÓMe		72
4 Bi	nQ	∕∕~_MgBr	NHBoc 5	65
5	N-NH-Ts N Boc	PhMgBr	PhNHBoc 7 ^{ŌBn}	60
6	6	MgBr OMe	MeO 8 NHBoc	65
7		O MgBr	OLIVIE DE NHBoc ÖBn 9	72
8	N-NH-Ts Boc	PhMgBr	Ph NHBoc 11	70
9	10	MgBr OMe	MeO 12	75
10		O MgBr	NHE 13	80C 72

Table 1

a) The olefin geometry of alicyclic carbamates found to be *trans* by spectroscopic analysis (except entry 4 compound 5, E/Z, 90:10)

b) Yields calculated after column chromatography of the products

To check generality of this method, 1 was subjected to 4-methoxyphenylmagnesium bromide under identical reaction conditions to give Boc-protected 4-methoxyphenyl-pentenyl amine in 65% yield. Hydrazone 1 was also treated with 3,4-methylenedioxy phenylmagnesium bromide and propylmagnesium bromide to provide ring-opened products in moderate yields (entry 3 and 4). The tosylhydrazone 6, which is obtained from 4-hydroxyproline, when exposed to PhMgBr, 4-MeO-PhMgBr, and 3,4 methylenedioxyphenylmagnesium bromide gave the corresponding amino alcohols (7, 8, 9).⁶ Identical results were drawn from tosylhydrazone 10 (entry 8, Table 1) to afford the ring-opened acyclic amines having unsaturation between C_5-C_6 (entries 8, 9, 10).

In conclusion, a facile and convenient method for the synthesis of double bond containing terminal carbamates and carbamate alcohols has been developed, which should find use in organic synthesis.

Acknowledgements

Two of us (M.V.R. and G.R.) thank (CSIR New Delhi) for financial support.

References

- (a) Fellows, E. J.; Ullyot, G. E. Medicinal Chemistry; Wiley: New York, 1951; Vol. 1, p. 930. (b) Direter, R. K.; Deo, N.; Lagu, B.; Direter, J. W. J. Org. Chem. 1992, 57, 1663. (c) Coppola, G. M.; Schuster, H. F. Construction of Chiral Molecules Using Aminoacids; Wiley: New York, 1987. (d) Rossen, K.; Simpson, P. M.; Wells, K. M. Synth. Commun. 1993, 23, 1071. (e) Kamati, J.; Shibuya, S.; Sugi, H.; Fukumoto, K. J. Heterocycl. Chem. 1973, 451. (f) Golebiowski, A. Jurczak, J. Synlett 1993, 241.
- (a) Fincham, C. I.; Higginbottom, M.; Hill, D. R.; Horwell, D. C.; O' Toole, J. C.; Ratcliffe, G. S.; Rees, D. C.; Roberts, E. J. Med. Chem. 1992, 35, 1472. (b) Auvin-Guette, C.; Rebuffat, S.; Prigent, Y.; Bodo, B. J. Am.Chem. Soc. 1992, 114, 2170. (c). Goodman, L. S.; Gillman, A. The Pharmacological Basis of Therapeutics, 6th ed.;

Goodman, L. S.; Gillman, A., Eds.; McMillan: New York, 1980. (d) McCarty, F. J. Rosenstock, P. D.; Paolini, J. P.; Micucel, D. D.; Ashton, L.; Benneetts, W. W.; Palopoli, F. P. J. Med. Chem. 1968, 11, 534.

- (a) Chandrasekhar, S.; Mohapatra, S.; *Tetrahedron Lett.* 1998, 39, 6415 (b) Chandrasekhar, S.; Mohapatra, S.; Yadav, J. S. *Tetrahedron* 1999, 55, 4763. (c) Chandrasekhar, S.; Mohanty P. K. *Tetrahedron Lett.* 1999, 40, 5071.
- (a) Chandrasekhar, S.; Reddy, M. V.; Takhi, M. Tetrahedron Lett. 1998, 39, 6535. (b) Chandrasekhar, S.; Takhi, M.; Yadav, J. S. Tetrahedron Lett. 1995, 36, 307. (c) Chandrasekhar, S.; Takhi, M.; Yadav, J. S. Tetrahedron Lett. 1995, 36, 5071. (d) Chandrasekhar, S.; Mohapatra, S.; Takhi, M. Tetrahedron Lett. 1996, 37, 759. (e) Chandrasekhar, S.; Reddy, M. V.; Reddy, K. S.; Ramarao, C. Tetrahedron Lett. 2000, 41, 2667.
- 5. General procedure: Preformed arylmagnesium bromide (2.5 mmol) in (15 mL) anhydrous THF was added dropwise to a cold aminoaldehyde *p*-toluenesulfonyl hydrazone (1 mmol) in (5 mL) anhydrous THF under a nitrogen atm, then stirred at ambient temperature for 4 h. The reaction mixture was quenched with saturated NH₄Cl solution (10 mL) and extracted with ether (2×25 mL). The combined organic layers were washed with water, brine and dried over Na₂SO₄. The volatiles were removed under vacuum and the residue was purified by column chromatography to afford *trans*-Boc-protected compounds (see Table 1).
- 6. Spectroscopic data of compounds: compound 2. ¹H NMR CDCl₃ 200 MHz: δ 7.4–7.15 (m, 5H), 6.40 (d, 1H, J=15 Hz), 6.25–6.10 (m, 1H), 4.50 (bs, 1H), 3.25–3.15 (m, 2H), 2.35–2.20 (m, 2H), 1.75–1.6 (m, 2H), 1.45 (s, 9H); IR (neat): 3325, 1687, 1280, 1150 cm⁻¹; EI MS: m/z 205 (M⁺–56), 144, 105, 77, 57: compound 7. ¹H NMR CDCl₃ 200 MHz: δ 7.40–7.20 (m, 10H), 6.55 (d, 1H, J=15 Hz), 5.80–5.65 (m, 1H), 4.80 (bs, 1H), 4.70–4.65 (m, 1H), 4.62–4.50 (dd, 2H, J=9.6, 19.2 Hz), 3.62–3.05 (m, 2H), 2.72–2.45 (m, 2H), 1.45 (s, 9H); IR (neat): 3306, 1685, 1282, 1103 cm⁻¹; EI MS: m/z 311 (M⁺–56) 204, 107, 57: compound 12. ¹H NMR CDCl₃ 200 MHz: δ 7.25 (d, 2H, J=8.3 Hz), 6.80 (d, 2H, J=8.3 Hz), 6.30 (d, 1H, J=16 Hz), 6.10–5.95 (m, 1H), 4.50 (bs, 1H), 3.80 (s, 3H), 3.10–2.90 (m, 2H), 2.30–2.10 (m, 2H), 2.0–1.65 (m, 4H), 1.45 (s, 9H). IR (neat): 3320, 1685, 1280, 1175 cm⁻¹; EI MS: m/z 249 (M⁺–56), 188, 147, 121, 57.